llama.cpp与ollama是开源项目,旨在解决大型模型在本地部署时遇到的问题。通过llama.cpp,用户可以对模型进行量化,以解决模型在特定电脑配置下无法运行的问题。同时,ollama则提供了一个简单的方法,让量化后的模型在本地更方便地运行。
对于许多用户来说,下载开源大模型后,往往面临不会运行或硬件配置不足无法运行的困扰。本文通过介绍llama.cpp和ollama的使用,提供了一个从量化到本地运行的解决方案。
下面,我们以Llama2开源大模型为例,详细说明如何在本地使用llama.cpp进行量化GGUF模型,并通过ollama进行运行。
在开始前,如果对量化和GGUF等专业术语感到困惑,建议使用文心一言或chatGPT等AI工具进行查询以获取更多信息。
使用ollama进行运行非常简单,只需访问其官网下载安装应用即可。支持众多大模型,操作指令直接使用`ollama run`即可自动下载和运行大模型。
运行指令示例:对于llama2大模型,原本12.5G的7b模型在ollama中压缩至3.8G,量化等级为Q4_0。若需导入并运行已量化的GGUF模型,只需创建一个文件并添加FROM指令,指定模型本地文件路径。
在使用ollama进行模型操作时,需注意创建模型、运行模型等步骤。若有疑问,可留言交流。
对于自行下载的模型,要实现量化成GGUF格式,就需要借助于llama.cpp项目。该项目旨在实现LLM推理,支持多种量化级别,如1.5位、2位、3位、4位、5位、6位和8位整数量化,以提高推理速度并减少内存使用。
要使用llama.cpp,首先需克隆源码并创建build目录,然后通过Cmake进行编译。推荐使用Visual Studio 2022进行编译。编译成功后,可在bin/release目录找到编译好的程序。
接下来,通过llama.cpp项目中的convert.py脚本将模型转换为GGUF格式。对于llama2-13b模型,转换后的模型大小从24.2G缩减至6.85G。
量化模型后,运行时使用llama.cpp编译的main.exe或直接使用ollama进行操作。通过创建文本文件并指定模型,使用ollama run指令即可轻松运行量化后的模型。
本文通过详细示例展示了如何利用llama.cpp和ollama对大模型进行量化并实现本地运行。若需进一步了解或在操作中遇到问题,欢迎在留言区进行交流。
本文地址: http://www.goggeous.com/20250107/1/1280618
文章来源:天狐定制
版权声明:除非特别标注,否则均为本站原创文章,转载时请以链接形式注明文章出处。
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-08职业培训
2025-01-07 06:27:27职业培训
2025-01-07 06:27:26职业培训
2025-01-07 06:27:18职业培训
2025-01-07 06:27:17职业培训
2025-01-07 06:27:17职业培训
2025-01-07 06:27:16职业培训
2025-01-07 06:27:09职业培训
2025-01-07 06:27:08职业培训
2025-01-07 06:27:08职业培训
2025-01-07 06:27:07职业培训
2024-12-28 07:41职业培训
2024-12-08 00:45职业培训
2024-12-13 22:22职业培训
2024-12-04 08:35职业培训
2025-01-01 21:22职业培训
2024-12-10 23:24职业培训
2024-12-15 13:26职业培训
2024-12-07 15:06职业培训
2024-11-27 18:35职业培训
2024-12-13 20:00职业培训
扫码二维码
获取最新动态